THE FEDERAL COURTS LAW REVIEW

Volume 1 2006

Discovery in Computer Software
Patent Litigation

Andy Johnson-Laird*

I. RuLEs AprPLICABLE TO COMPUTER-BASED EVIDENCE... 95

A. Rule 34 of Federal Rules of Civil Procedure —
Production of Documents...................cconn... 95
B. Rule 106 of Federal Rules of Evidence — Related
WIS .ottt et e e 96

II. COMPUTER SOFTWARE AND DESIGN AND
PRODUCTION . ..o ettt et eiaieaeans 97
A. Source Codeoovnii e 97
B. COMMENIS ...vvttirriiiiireieieeiiieirinnannaannenss 99
C. Symbolic Constantscoviiiiiiiiiiiinnennn. 100
D. Object Codecoiii 101
E. Software Production Phases 101
F. Specification Phaseol 102
G. Implementation, or Coding, Phase 103
H. Initial Testingcoiiiiiiiiiiiiiiiiiiiaan 103
I. Revision Control........ooviiiiiiiiiiiriiiinnneennnn. 103
J. Production Documentationcovvvieeerennn 104
K. Testing Phaseco. it 104
L. Maintenance Phasecc i, 105
M. Computer Programs in Firmware 105

III. WHAT MigHT Ex1ST TO BE DISCOVERED?............... 105
A. Design and Specification Documentation 105
B. Source Code Documentationc.ocovuuueennn.. 106

* Mr. Johnson-Laird is a Forensic Software Analyst with Johnson-Laird Inc. He can be
reached at the following address: 850 NW Summit Avenue, Portland, OR 97210; telephone
number: (503) 274-0784; fax number: (503) 274-0512; email address: andy@jli.com; or web-
site: http://'www.jli.com/. Portions of this paper were first published in the August 1994 issue
of The Computer Lawyer in the article, Smoking Guns and Spinning Disks. The author
gratefully acknowledges the assistance of G. Gervaise Davis 111 Esq. with the legal topics
addressed in this paper. This article was published electronically in March 1998.

IV.

VL

VIL

VIIL

IX.

XL
XII.

THE FEDERAL COURTS LAW REVIEW [Vol. 1

Header Files i
Object Code ..o e
Firmware ...

..

TOTMEm YO
Z
o
~
mw
ey
3

Development Documentation........................

UNIQUE CHARACTERISTICS OF COMPUTER-BASED
| A2 1 5) 1 (o)

RepUNDANT CopPiEs OF COMPUTER-BASED
| 2AY415) 23 o) S

Global Distribution of Computer-Based
Documents. ..ottt

Deliberate Backup Copiescovvviennn....
Inadvertent Backup Copiesoeein....
Off-Site Backup Copies...........cocoviiiiiiiiin...
Source Code Escrow............cccoiiiiiiinin....

>

Mmoo 0w

BACKUP COPIES ARE INCOMPLETE ... vv'eririrerrnrnnenns
A. MagneticTapesooviiiiiiiiiiiii i,

B. Computer-Based Evidence Must be Preserved
Immediatelyco i

THE VAsT QUANTITY OF COMPUTER-BASED
EVIDENCE. . oot e ettt ettt

THE DisorGANIZED STATE OF COMPUTER-BASED
EVIDENCE. ¢ttt e i et ettt ee e

DRAFTING DOCUMENT REQUESTS ..o vvveiiiiiiennnnnn.
A. Embodiment of Documents Produced

B. Information Necessary to Access Information
Producedc.o i e

C. Ensuring a Complete Production
DRAFTING INTERROGATORIESvviiiniiniennnnnnn.
A. Software Authorship...................
B. Methods Used for Document Production............
C. Identification of Versionsccovvvenn...

2006] Computer Software Patent Litigation 95

I. RuLes AppPLICABLE TO COMPUTER-BASED EVIDENCE

A. Rule 34 of Federal Rules of Civil Procedure - Production of
Documents

Federal Rule of Civil Procedure 34(a) states:

(a) Scope. Any party may serve on any other party a request (1) to pro-
duce and permit the party making the request, or someone acting on his
behalf, to inspect and copy, any designated documents (including writings,
drawings, graphs, charts, photographs, phono-records, and other data
compilations from which information can be obtained, translated, if neces-
sary, by the respondent through detection devices into reasonably usable
form), or to inspect and copy, test, or sample any tangible things which
constitute or contain matters within the scope of Rule 26(b) and which are
in the possession, custody or control of the party upon whom the request
is served; or (2) to permit entry upon designated land or other property in
the possession or control of the party upon whom the request is served for
the purpose of inspection and measuring, surveying, photographing, test-
ing, or sampling the property or any designated object or operation
thereon, within the scope of Rule 26(b).

Writing in Federal Practice and Procedure, Wright and Miller take

the first step in applying Rule 34(a) to computerized information:
One seemingly small but actually quite important change made in the
1970 amendments of Rule 34 brought the federal rules, in some ways for
the first time, into the computer age. The original rule had spoken only of
documents and tangible things. Today much information of importance in
litigation is no longer on documents stored in files but is on punched data
cards, electronic disks or tapes, or otherwise stored in a computer. Plainly
this information must be subject to discovery and the 1970 amendment
clearly provided for ediscovery.!

Wright and Miller reason that Rule 34(a)’s reference to “other
data compilations from which information can be obtained, translated,
if necessary, by the respondent through detection devices into reasona-
bly usable form,” makes it clear that the requesting party is entitled to
have the computerized data presented in a form such as a hard copy
printout. However, in computer software patent litigation, that would
be inadvisable, since a printout often lacks significant additional infor-
mation only available by forensic examination of the computer-based
version of the document.

1. Charles A. Wright & Arthur R. Miller, Federal Practice and Procedure § 2218 (2d
ed. 1994).

96 THE FEDERAL COURTS LAW REVIEW [Vol. 1

B. Rule 106 of Federal Rules of Evidence — Related Writings

Federal Rule of Evidence 106 states: “When a writing or recorded
statement or part thereof is introduced by a party, an adverse party
may require him at that time to introduce any other part of any other
writing or recorded statement which ought in fairness to be considered
contemporaneously with it.”

Wright and Miller comment:

Computerized materials present difficulties of analysis. The use of a docu-
ment prepared by a computer involves a writing and should be treated in
the same fashion as other documents under the Rule. The problem arises
where a party asserts that the data stored within the computer constitutes
the “writing” and the print-out is an incomplete part. Or the opponent
may assert that the print-out requires the use of the program to be cor-
rectly understood. This Rule offers no guidance on such questions.?
The proper treatment of photographs and motion pictures under Rule
106 1s equally obscure. But the fact that Article X of the Rules, unlike
the state codifications, treats motion pictures and photographs as a dis-
tinct category, rather than a species of “writing,” might lead to an infer-
ence that writing is to be given the same restricted meaning for

purposes of Rule 106.

Since a picture is worth a thousand words, to a liar as well as to an
honest man, there would seem to be an even greater danger of mislead-
ing photographs than of documents taken out of context. It is possible
to crop photographs and edit motion pictures to alter their
significance.?

To some extent these dangers can be avoided by manipulation of
the “best evidence” rule, but even though photographs are “writings”
for purposes of that rule, there are many uses of photos to which the
“best evidence” rule does not apply. It can also be argued that the
same policy reasons that justify treating photographs as “writings” for
purposes of the “best evidence” rule are applicable to the same issue in
connection with the completeness doctrine. Moreover, photographs
and motion pictures do not raise the administrative problems thought
to justify excluding conversations from Rule 106.4

2. 21A CHARLES A. WRIGHT & ARTHUR R. MILLER, FEDERAL PRACTICE AND PrO-
CEDURE § 5073 (2d ed. 1977).

3. This was written before the advent of digital photography and digital motion pic-
tures, the advent of which makes a complete mockery out of concepts that ‘the camera never
lies.” Today, the photograph and videotape can lie as easily as the redacted or out of context
document.

4. 21A WrigHT & MILLER, supra note 2, § 3.

2006] Computer Software Patent Litigation 97

With the arrival of audio-visual computing, often referred to as
“multimedia,” even small personal computers can store textual docu-
ments, digitized photographs, motion pictures, and high-fidelity sound.
This digitized information can be manipulated easily and in a way that,
in the future, will doubtless cause much consternation to attorneys and
judges alike as they struggle with the application of Rules 34 and 106 to
computer-based information. When digitized information is involved,
there is actually no one original document. There are few technical
means to determine the authenticity of a given document, or to detect
whether someone has tampered with a digitized photograph, video re-
cording, or audio recording.

II. CoMPUTER SOFTWARE AND DESIGN AND PrRoODUCTION

Attorneys who have a good mental model of the nature of com-
puter software, what it is, and how it is produced, are far more effective
in motivating an opposing party’s counsel to produce the relevant
software in a form in which it can be analyzed cost effectively. There-
fore, it is appropriate to begin a discussion about the discovery of com-
puter software with an introductory overview of how we design and
produce software. This overview helps to answer the question: What
information exists that can be discovered? What follows is, of neces-
sity, a brief introduction to the world of computer software design and
production.?

A. Source Code

To visualize computer source code requires little more than a sim-
ple thought experiment which one has to commit to writing. The essen-
tial problem is to translate a real-world act into a simple series of steps
and then write those steps down in the proper order.

As an example, imagine sending an email message or a letter to a
child telling him or her how to calculate a 15% tip on a restaurant bill.
The age of the child will determine the level of abstraction at which one
must write the instructions. A younger child will require more detailed
instructions, perhaps at the level of specifying which buttons to press;
for an older child a simple instruction of “enter the total” will suffice.
We can tell an even older child merely to “multiply 0.15 times total, and
add the result to the total.”

5. A more detailed introduction to the basic concepts of computer software is availa-
ble on the World Wide Web at http://www jli.com/papers.htm.

98 THE FEDERAL COURTS LAW REVIEW [Vol. 1

Now imagine a more complicated set of calculations: calculating a
consultant’s billing based upon hours worked (converting to decimal
hours), client-specific billing rates and so on. At some point the com-
plexity and scope of the problem to be solved exceed one’s ability to
hold the entire problem in one’s head, and it becomes easier to create a
written specification of the problem to be solved. Real-world program-
ming has many of the characteristics described above. Typically a writ-
ten specification will describe the problem to be solved and its solution
at a high level of abstraction; the programmer then will translate this
into a more detailed level of abstraction as he or she writes the human
readable form of the code, the source code. This source code is then
compiled using a compiler to translate the source code into object code
to form an executable program that can be run on the computer.

Source code can be written in a so-called high-level language such
as “C.”¢ C is one of the more popular computer programming lan-
guages. C has the advantage, to programmers at least, of shielding the
programmer from having to understand the technical aspects of the
computer system upon which the final program will run. The C lan-
guage does this by creating a world in which the programmer can oper-
ate in ignorance of technical details. The secret is in the translation
program, the compiler, which generates the correct code for the
computer.

For the previous restaurant example, the program would need to
declare a variable, a working storage location akin to a note pad upon
which temporary results are jotted for the bill’s total. The next step
would be to set the contents of this variable to its initial value of zero (a
step called initializing the variable). In C, this might appear as:”

float bill_total;
bill_total = 0.0;

This fragment of C source code illustrates several aspects of program
source code. The word “float” indicates to the C compiler that it
should set aside an area of memory that will contain a floating point
number. A floating point number is expressed in the form 123.456 x

6. The folklore is that the language “C” was derived from a language called “B.” B
had been developed at Bell Labs, and may have been named for Bell Labs. Do not confuse
a high-level language with a high level of abstraction. A high-level language is a compara-
tive term. Early computer languages were so low-level that they (and many of their propo-
nents) dragged their intellectual knuckles on the ground.

7. Experienced programmers will be quick to point out that this fragment lacks the
appropriate pre- and post-amble to be valid C; however, the intent is to communicate the
flavor of C, not to demonstrate syntax.

2006] Computer Software Patent Litigation 99

10", where “n” is chosen to represent the number with appropriate ac-
curacy, ranging from very small numbers to very large numbers. One
important point to note is that the programmer can, like a brattish
child, simply state “I want that!” and let the C compiler take care of the
details. A secondary point is that “float bill_total;” does not cause any
executable instructions to be created in the resulting program—it
merely requests that the compiler set aside some memory for storing
this value and associates the name “bill_total” with this location in
memory.

The name “bill_total” is created from whole cloth. If the program-
mer complies with the grammatical rules of the C language, which are
specified in excruciating detail in reference books, he or she may call
this variable anything, for example, “x,” “Wayne_Newton,” or “This_Is
_Where_I_Want_To_Put_The_Bill_Total.” The underscore is used to
comply with C’s grammar, which states that symbolic variable names
such as these will be terminated by a space character (among other
things). The underscore therefore serves to break up a long name with-
out terminating it. Programmers learn (the hard way) that meaningful
names that hint at the purpose of the data stored therein are much bet-
ter than those that either give no information or tend to mislead. Pro-
grammers usually abbreviate symbolic variable names and there are
different styles of naming conventions: “bt,” “total,” “tot_bill,” “sum,”
“tot_no_tip” would all be valid names. These naming conventions are
part of an individual programmer’s coding style.

The semicolon shows the C compiler that the programmer has
made a complete utterance, similar to the use of the period in English.
The period cannot be used in C for this purpose, because it represents
the decimal point.

The second line, “bill_total = 0.0”; assigns a value of 0.0 to the area
in memory (assigned by the compiler) to correspond to “bill_total.” To
mathematicians this is a curious use of the equal sign; in contrast to
mathematical notation, this is not an assertion that “bill_total” is equal
to 0.0. Instead, it states that “bill_total” will become equal to 0.0. In
the mind of the programmer, the value on the right of the equal sign is
copied into the symbolic variable name on the left.

B. Comments

An important part of source code, though not used by the com-
puter itself, is the comments added by the programmer. These are tex-

100 THE FEDERAL COURTS LAW REVIEW [Vol. 1

tual annotations intermixed with the actual programming statements
that are discarded during the compilation of C code into object code.

In C, comments are delineated by two special character sequences,
/* and */, which serve as parentheses. For example, here are the previ-
ous two lines of code with comments added:

/*

This is an example of a coment

Block comments typically precede the code they

describe and consist of several contiguous lines of comments like

this.

*/

float bill_total; /* Declare variable for the total */

bill_total = 0.0; /* Initialized variable to zero */

Note the deliberate spelling error of the word “coment.” It is not
at all unusual to see spelling errors in source code. In comments they
do not matter, and in the active source code, providing the programmer
is consistent, they have no effect. These spelling errors, and the actual
writing style that programmers use in comments, can give good clues to
authorship. Even the style of block comments at the top of the example
above gives stylistic hints. The physical formatting of the comment
lines, their indentations, and their spacing may provide clues to
software authorship.

C. Symbolic Constants

In most of the examples of source code thus far, when a numeric
value has been required it has been written in the actual code. This is a
very bad practice. It is much harder to maintain programs because the
same number may be scattered throughout a larger program, but not all
of the instances where it occurs might have the same meaning. Any
attempt to change this number will almost certainly create a bug of
major proportions.

Therefore, most programming languages support the use of sym-
bolic constants. For example, in C, one could write:

#define MAX_ITEMS 20 /* The maximum number of items */
:float item[MAX_ITEMS]; /* Declare array of floating point num-
bers */

while (count < MAX_ITEMS)
...and soon. ..

2006] Computer Software Patent Litigation 101

The C compiler automatically substitutes the value 20 from the
“#define” line in all instances where “MAX_ITEMS” appears. This
means that only a single line of code (the “#define” line) need be
changed to alter the total number of items.

D. Object Code

Object code is the product of compiling source code and linking it
with other object code to form an executable binary version of the pro-
gram. Object code is lacking much of the information in the original
source code:

a) All of the comments have been removed during the compilation
process.

b) All of the symbolic variable names and symbolic constants have been
replaced by memory locations (as numbers) and the constant values. The
one exception is symbolic names of certain parts of the computer pro-
gram. The linker (the program that links the object code) needs these as
it connects discrete chunks of object code together to form the finished
program.

¢) The symbolic names are normally removed from production object
code sent out into the market. There is almost no information of high-
level abstraction in the resulting executable binaries. That factor becomes
very relevant when considering the topic of reverse engineering software
(studying the object code to learn how it works). The only immediately
comprehensible information in the object code is the embedded character
strings that are created when the programmer needs to reference an error
message or to display information on the screen.

One can see these embedded fragments of text if one examines
object code using specific programming utility programs. These em-
bedded fragments of text have a certain forensic value: for example,
they can be used to relate certain object code back to the source code
from which it may have been compiled. However, unless the embed-
ded fragments contain unusually bizarre text, this is a rather approxi-
mate method that can be misleading. It is akin to recognizing people

by the shadow they cast.

E. Software Production Phases

Discovery of computer software is greatly aided if one understands
the phases in which it is produced. Knowing how it is produced leads to
understanding what work product will be created, and what informa-
tion and documentation may exist and be discoverable.

There are several very discrete phases in the journey from idea to
retail shelf. Some phases may be omitted depending upon the task, the

102 THE FEDERAL COURTS LAW REVIEW [Vol. 1

experience levels of the programmers, and the size (and budget) of the
company doing the work. The phases described below have significant
overlap: writing the source code often starts before all of the programs
have been specified, and testing starts before all of the program’s
source code has been written. Software development has been de-
scribed as a process of step-wise refinement.

F. Specification Phase

The initial stage is to create documents describing the intended
product. Various types of specifications can be produced consistent
with the practices used by each development company. Usually each
successive specification is more detailed in the level of technical detail
it includes. Specifications include:

a) Marketing Requirements: The perceived requirements of the market-
place as to the particular features a new product should have to be desira-
ble to users, particular performance requirements such as speed and upon
what computers it should run, and so on.

b) Design Requirements: The specific design requirements for the pro-
gram at a more detailed level. For example, it might describe that the
product must be written in C, using particular supporting third-party ob-
ject code libraries. These would not be matters of concern to the market-
ing of the program.

¢) Functional Specification: A description of what a program or group of
programs must do. At this level, overall functionality is apportioned to
specific programs with a description of how these programs will interoper-
ate and exchange information.

d) Detailed Design: A more detailed description of the input informa-
tion, processing, and output information that will be produced by each
program in the system. This level of specification is intended to guide the
programmer who will create the source code. This level therefore usually
includes descriptions of data structures, the major functionality within
each program, algorithms to be used to compute results, and other de-
tailed programming notes. Where necessary, algorithms will be described
using logic flow diagrams (that show the decisions and processing to be
performed depending on the outcomes of those decisions) or pseudo-code
(source code written in part English and part programming language so
that the underlying algorithm is visible to the programmer even though, as
source code, it is not grammatically correct).

e) Test Plan: Describes how the program(s) will be tested before being
made available on the market. Often this involves both general testing
strategies and specific scripts that will guide someone through the specific
interaction with the program. Testing is a particularly thorny issue, yet test
plans are quite rare in the software industry. Testing can never confirm an
absence of errors; testing can only reveal the presence of errors.

2006] Computer Software Patent Litigation 103

G. Implementation, or Coding, Phase

This is the phase where programmers systematically convert the
detailed design specifications into working programs. A modern ap-
proach often used by smaller software development companies where,
for time and cost reasons, the detailed design specification may not be
produced, is to perform rapid application development (RAD). In
RAD, working prototypes of programs are created to serve as the spec-
ification. Prototypes have an advantage in exposing users to real, but
minimally functional, programs early, and in providing reaction to the
design and functionality early enough to affect the design of the fin-
ished product.

H. Initial Testing

The coding phases consist of creating the human readable source
code, converting it into object code, and linking object code modules to
form executable programs to be tested using specimen data files. This
testing of individual programs is often called unit testing.

Any mistakes found in testing must be investigated (sometimes,
just getting the mistake to happen again is the hardest part). Once the
programmer understands what went wrong, the source code must be
changed and the modified program must be re-tested to ensure that the
change corrects the original problem but does not introduce any addi-
tional errors.

I. Revision Control

Source code for a given program undergoes many changes from
the very first version created to the final version. More complex pro-
grams require several programmers working collaboratively on the
source code, and this creates an additional problem of coordinating all
of the changes within the programming team.

Specialized revision control programs are used to manage and co-
ordinate these changes by automating the job of a source code libra-
rian. Revision control programs record every change made by all
programmers to all source code files as the source code evolves. The
most popular of these are Microsoft’s SourceSafe, the Polytron Version
Control System (PVCS), the Unix standards Source Code Control Sys-
tem (SCCS), and Revision Control System (RCS). Revision control
programs work by creating cumulative history files for every source
code file under their management. These history files contain details of

104 THE FEDERAL COURTS LAW REVIEW [Vol. 1

every version of every source code file that has ever existed from the
time the source code was first put under version control.

J. Production Documentation

There are two general classes of documentation that are created as
part of software production:

a) User documentation to tell users how to install the software, how to set
it up for production use, and how to use all the features of the software.

b) Maintenance documentation to tell the software developer’s own per-
sonnel how the program works so the developer can make changes to the
program. In some cases, this documentation is embedded in the source
code itself in the form of comments.

Documentation can also be managed by revision control systems
or document management systems similar to those used in law firms.

K. Testing Phase

As more and more of the programs in a system become ready, they
can be tested in combination to ensure that the output of one program
can be accepted correctly by the next. The process is called string test-
ing (the programs are “strung together”). String testing usually re-
quires more complex test data files and more complex testing scripts.
String testing is usually followed by system tests, in which all of the pro-
grams in the system are run as though in the finished product.

Once all of the programs are believed to be working, they will be
stress tested. This is a process whereby the system is pushed to its limits.
Huge data files are created and manipulated, and massive numbers of
different operations are performed. The intent is to flush out any mis-
takes that may be revealed only when the programs have to perform
many operations on large amounts of data.

When programs are deemed to be ready, they will be released to a
small number of trusted clients for alpha testing. This is the first testing
by actual users in the marketplace and usually generates many reports
of problems that slipped through the in-house testing.

Once all relevant errors are corrected, the revised programs are
released to selected users for beta-testing, and the cycle of testing, prob-
lem reporting, and correcting the programs is repeated. Some organi-
zations even resort to gamma-testing to ensure more reliable software.

2006] Computer Software Patent Litigation 105
L. Maintenance Phase

There are two types of maintenance: adaptive maintenance and
corrective maintenance. Taken together over the useful life of the pro-
grams, adaptive maintenance and corrective maintenance may cost tens
or hundreds of times more than the original development cost.

M. Computer Programs in Firmware

When a computer program is stored directly in a computer chip so
that it remains there even when the power to the chip is switched off,
then it is called firmware rather than software. Firmware exists in every
modern computer. It is used to perform the initial self-test of the com-
puter when it is first switched on, and it is also responsible for loading
the operating system software that will then take overall supervisory
control of the computer until it is switched off. Firmware exists in every
device that claims to be microcomputer controlled, from wristwatches
to electric toasters, microwave ovens, cellular phones, and automobiles.

Firmware differs from software only in its embodiment. All of the
above narrative regarding the production of computer software also ap-
plies to the production of firmware. Firmware, in the context of litiga-
tion, differs from software only in that its analysis is likely to require
extraction of the actual zeroes and ones from the physical chip in which
it is contained.

IIT. WHAT MiGHT EXIST TO BE DISCOVERED?

Creating a computer program leaves a broad wake of evidence as
the development proceeds. During discovery, it is important to be
aware of what relevant evidence might exist, and the form in which
each type of evidence might be embodied.

A. Design and Specification Documentation

It is perhaps true that the larger the organization creating com-
puter software, the greater the amount of design and specification doc-
umentation that will be created. Larger companies are more prone to
regimentation and standardization, and this tends to spawn more for-
mal approaches. A one person programming shop may be a much more
ad hoc affair. Countering this thesis is the fact that programmer educa-
tion is improving, the need for documentation is becoming more widely
known, and there is greater pressure to produce it. There is, therefore,

106 THE FEDERAL COURTS LAW REVIEW [Vol. 1

no predictability as to the amount, quality, or type of documentation
that may exist for a given project.

Most formal design and specification documentation will exist as
some kind of computer-based evidence, and it will usually exist in mul-
tiple versions in multiple places. It is not unusual to find that what
would, in an earlier era, have been handwritten marginalia scribbled on
specification documents has been replaced by word processing docu-
ments containing embedded annotations, or even digitized audio.

There is an increasing trend to create graphical representations of
computer software, be they computer-based versions of flowcharts or
more modern dataflow diagrams or other representations of the re-
quired program logic. All these representations serve the same pur-
pose: translation of thought into the sequential steps to be performed
by a computer program.

B. Source Code Documentation

Usually source code exists as hundreds, sometimes thousands, of
computer files containing text. Certain programming regimes,? such as
Microsoft’s Visual Basic, keep the source code in a quasi-textual form
in association with other computer data that prevents the source code
from being read directly. Whatever the specific form, the most impor-
tant single fact about source code discovery is that a printed listing of
the source code is demonstrably a redacted version of the information
available in the computer-based source code.

Apart from the redaction that occurs when source code is printed
out, a printed listing is a maximally inconvenient form in which to re-
ceive source code. One of the most frequent analyses of source code is
to search for the place where a particular symbolic variable is defined
or set to some value. A search of a million text lines of computer
source code will take a few seconds if that source code is on a com-
puter’s hard disk, but it will take several hours if that source code is
printed out. The risk of error is far higher with analysis of the printed
source code than with analysis of a source code on a computer’s hard
disk.

There are also specialized source code analysis tools that, provided
one has the source code on computer media, can build calling trees that

8. Formatting regimes are self-contained source code development environments. As
an analogy, WordPerfect would be considered a self-contained word processing
environment,

2006] Computer Software Patent Litigation 107

show how one part of the program invokes another part, which in turn
invokes another. The calling tree is like a street map. Special text edit-
ing programs can be used to move within the source code rapidly, fol-
lowing cross-references to other parts of the program. None of these
tools are available if all one has is the source code on paper.

Furthermore, if the source code has been placed under the aegis of
a revision control system, there is a wealth of forensic information con-
tained within the computer-based form of the source code that is al-
most entirely absent from the printed version. The revision control
system’s cumulative history file may reveal which programmers
changed which lines of source code, the specific changes, the date and
time each change was made, and additional annotations about why the
changes were made. Revision control software acts as a time machine,
winding the clock back so that one can see earlier versions of the com-
puter software.

C. Header Files

One often overlooked aspect of source code is the so-called header
or copybook files. (The name used varies according to the program-
ming language in question; header file is a term in C and C++, copy-
book is a term used in COBOL). These are separate source code files
that contain definitional material. Rather than being repeated in hun-
dreds of different source code files, the definitional information is
merely included during compilation from a single file.

Header/copybook files are often stored in separate directories on
the computer system. When source code is gathered for production in
litigation, header/copybook files are easy to overlook. However, be-
cause of their definitional content, they are vital to understanding a
program. For example, one might find a source code file containing the
lines:

if (status == ALLDONE) exit.

Absent knowledge of the significance of the symbol “ALLDONE”
(and knowledge that the use of capital letters is a convention to imply
that this is a symbolic constant defined elsewhere), this code is mean-
ingless. However, earlier in the source code file, one might find a
source code line that reads:

#include </projectX/includes/STATDEFS.H>.

This is an instruction to the compiler that, at compile time, it is to read
in the entire source code contained in file STATDEFS.H that can be

108 THE FEDERAL COURTS LAW REVIEW [Vol. 1

found in the “includes” directory in the “projectX” subdirectory. On
examination of this included file, STATDEFS.X, one might find the
source code line:

#define ALLDONE 43.

Armed with this knowledge one can determine that the original source
code line, in effect, reads, by substituting the value of 43 in place of the
symbol ALLDONE:

if (status == 43) exit;
in this example, “STATDEFS.X” is a header/copybook file.

D. Object Code

Certain computer languages do not result in object code being cre-
ated for a program; these inferpreted languages control a computer by
means of an interpreter reading in each line of the computer program,
and “executing” each line. In this sense, WordPerfect “interprets” the
embedded codes in a document, modifying the appearance of the text
in response to the “instructions” given by these codes. Microsoft Word,
and all of the current Microsoft Office products, are built upon
Microsoft’s Visual Basic for Applications. They all “interpret” instruc-
tions in the documents they create and manage.

Despite interpretive languages such as Basic and Lisp (which is
used in association with the computer-aided design program, Auto-
CAD), compiled languages do require object code with which to con-
trol the behavior of the computer.® As each source code file is
compiled, a corresponding object code file is created. These object
code files must then be linked together, along with any previously com-
piled object code, to form the complete executable form of the
program.

During the process of compilation, all symbolic variable names and
source code comments are discarded. However, the names of particu-
lar functions (a word used to describe specific subroutines within a pro-
gram) often survive in the object code as a byproduct of the linking
process and, as such, can provide some forensic insights into the origins
of the object code. By matching the symbolic names found in the ob-
ject code back to the symbolic variable names declared in the source

9. A compiled language must be translated into object code before it can control a
computer. An interpretive language requires a special language interpreter (such as a BA-
SIC interpreter) that is capable of examining each source code statement and causing the
appropriate action to take place.

2006] Computer Software Patent Litigation 109

code, it may be possible to establish a link, and thereby to establish an
association between source code and object code.

E. Firmware

If the object code to prior versions of the firmware program no
longer exists, it may be possible to discover prior versions of the
firmware “burned” into hardware chips. It is usual for these chips to be
kept by a firmware developer either for technical support reasons (an
earlier version can be tested to see if it exhibits a reported problem), or
because certain chips, once burned, cannot be reused, and the techni-
cian keeps them rather than discarding them. (The practice of dump-
ster diving—the searching of dumpsters outside offices—has been
known to reveal developmental copies of a company’s firmware in dis-
carded chips.)

F. “Make” Files

Even moderate-sized programs can become quite complex because
of the number of different source code files that must be compiled into
object code. It would be grossly inefficient and time-consuming if a
single change to one source code file were to require that all source
code files be recompiled. Therefore, it is usual to use another special-
ized program to determine which source code files must be recompiled
and to automate the entire process of compilation and linking. Recom-
pilation can be quite complex if an “include” file is changed because all
source code files that contain this file must be recompiled. This system,
first popularized under the Unix operating system, is called “make.”
The files that define the interdependencies between the source code
files, and contain directives to control the compilation and linking, are
called makefiles (usually written as a single word).

Unless a makefile is provided, it is almost impossible to rebuild a
modern computer program’s object code from its underlying source
code. There is simply not enough information in the source code from
which to infer how the process must be done.

G. Libraries

Many software developers, in the interests of completing a work-
ing program sooner, will purchase prefabricated libraries to provide
prefabricated solutions for specific tasks. Examples of these include
telecommunications libraries, database management libraries, and digi-

110 THE FEDERAL COURTS LAW REVIEW [Vol. 1

tized image manipulation libraries. These libraries are licensed either
as source code files that are to be compiled and linked with the devel-
oper’s own object code, or as precompiled libraries that only require
linking.

Given the finished object code for a developer’s program, apart
from an embedded textual copyright message, it may be impossible to
tell that one or more components of the program was created by the
inclusion of third party source or object code.

H. Development Documentation

Developing today’s software is a complex, time-consuming, and
expensive task. Therefore, in all but the smallest development compa-
nies, the software development process has to be managed carefully.
While separate from the technical aspects of the actual software devel-
opment, documentation of the commercial aspects of software develop-
ment often includes wuseful forensic information relating to
programmers who worked on the project and the overall schedule
under which the software was developed.

Associated with the management of the technical development
process is another wake of forensic evidence that will include budgetary
estimates, schedules showing milestone dates, and project reporting in-
formation revealing development schedules and milestones.

Although the quantity, quality, and nature of design and specifica-
tion material will vary wildly from one software developer to another,
there is usually some kind of development documentation. It may
range from early prototypical versions of the source code, to handwrit-
ten notes in a programmer’s notebook, to a series of different versions
of specification materials.

Electronic mail is very commonly used in the software develop-
ment industry. Programmers have been sending email messages to each
other since the early 1970’s, long before the Internet became known to
the public. It is quite common for employees in software development
companies, or in software development groups of large companies, to
communicate extensively by email among themselves. It is also quite
common for software development employees to communicate by
email to the marketing and sales departments, and even to end users of
the computer software.

Software development is a demanding art. Computers are notori-
ous for doing what programmers ask them to do rather than what pro-
grammers meant them to do. The maintenance phase of a computer

2006] Computer Software Patent Litigation 111

program can cost more than ten times the original development cost, as
the next generation of programmers struggles to understand what was
going on the in the minds of their programming forebears.

To combat these problems, and to reduce the cost of developing
and maintaining software, companies usually try to impose some level
of uniformity in the thinking and writing of their programmers. This
uniformity will be documented as requirements for standardized ways
of designing, coding, and testing software. That documentation can be
a useful source of understanding of the software itself and of forensic
information about the development process.

IV. UniQUE CHARACTERISTICS OF COMPUTER-BASED EVIDENCE

From an evidentiary point of view (and to the delight of forensic
software analysts such as this author), computer-based evidence has
characteristics that, if not understood and anticipated, may cause a re-
questing party to fail to discover relevant evidence and a producing
party to fail to preserve or produce it. These characteristics are:

a) Even small companies and individuals usually keep a vast amount of
information on computers (or make redundant copies for safekeeping).
b) Computer-based evidence is usually stored in a less organized manner
than is paper evidence. (It does not matter what sequence documents are
stored in, for example, if the computer only takes three seconds to find
any one of them.)

¢) Documents can be easily stored on the computer in a form that makes
it extremely tedious to search for particular documents before production.
This is especially true for digitized images, motion pictures and audio
recordings.

d) Redundant copies made deliberately for safekeeping (called ‘backup
copies’) are rarely managed appropriately and end up being scattered
around an office or at employees’ homes.

e) Inadvertent copies of documents are often made during customary
computer usage; these are rarely managed appropriately and tend to
propagate from one computer to another.

f) Backup copies of documents can be imperfect copies of the originals,
sometimes omitting information, and sometimes including more than is
required.

g) Electronic networks (both in the office and around the world) make it
easier and quicker to transmit several copies of 400 page documents to
other computers around the world than to walk to the nearest coffee pot.
h) Electronic mail, because of its informal nature, encourages its authors
to write unwise and inappropriate things that they might never say to a
recipient directly, and might regret writing in a letter or facsimile.

These characteristics demand that extraordinary steps be taken
during the early stages of litigation, perhaps before filing, if relevant

112 THE FEDERAL COURTS LAW REVIEW [Vol. 1

evidence is to be preserved. Ignorance of these characteristics may
mean a requesting party will fail to obtain appropriate evidence, and a
producing party may inadvertently waive privilege or produce docu-
ments in ignorance of their significance to the case.

To optimize its litigation position, a requesting party must:

a) Take early and aggressive action to ensure that computer-based evi-
dence is properly preserved by the opposing party. This may include put-
ting the opposing party on notice to preserve all relevant evidence by
making immediate backup copies of computer hard disks and by cessation
of reuse of tapes during customary backup cycles. Retaining a competent
computer expert to help convince a magistrate judge why such early and
forceful action must be taken may be advantageous.

b) Formulate discovery requests that demand the production of all rele-
vant forms of computer-based evidence. The requesting party must insist
on a complete examination of relevant computer-based evidence.

c) Retain a competent expert to help sift through the computer-based ev-
idence produced by defendant. An expert can often find ‘smoking guns’
that the opposing party unwittingly produced.

To optimize its litigation position, a producing party must:

a) Take early action to ensure that the client (probably with the assis-
tance of an expert) preserves existing evidence, including, if necessary, dis-
abling any automated procedures on the computer that will destroy such
evidence as part of a routine janitorial function on the computer’s storage.
It is most unusual for commercial backup software to preserve a complete
backup of a computer’s storage media suitable for evidentiary analysis.
Backup software only preserves active files, and not those recently de-
leted. It may be a separate question whether deleted files that still exist
on hard disks and tapes are discoverable. Some might assert that deleted
files are analogous to paper documents that have been discarded.

b) Retain a competent expert to sift through any computer storage media
that is to be produced. If one produces a magnetic tape to an opponent,
and the magnetic tape contains information protected by privilege or by
the attorney work product doctrine, one may thereby waive privilege on
entire classes of evidence.

V. RebpunpaNT Copries oF COMPUTER-BASED EVIDENCE

A. Global Distribution of Computer-Based Documents

Litigation attorneys routinely recognize that multiple copies of
every conventional business record may exist in many locations and in
different embodiments. Similarly, multiple copies of every item of
computer-based evidence may exist on some or all of the parties’ com-
puters, and possibly on computers under the control of third parties.

2006] Computer Software Patent Litigation 113

It is usual for a modern company to have a personal computer for
each employee; more sophisticated companies will network these com-
puters together, with ‘server’ computers providing a central repository
for computer software and documents, accessible from all other com-
puters on the ‘local area network’ (LAN) or ‘wide area network’
(WAN). Such networks, augmented by worldwide networks like the
Internet, make it inevitable that computer-based evidence will travel
widely. In contrast to paper documents, which require a certain
amount of effort to distribute, computer-based versions of documents
can be propagated around the world almost effortlessly. For example,
assuming that this author had access to the source code for Microsoft
Windows and the Internet, here is the command that could send hun-
dreds of copies (depending on the number of addressees) of Microsoft’s
‘crown jewels’ around the world in a few seconds:

mail mailing-list < msw.src.tar.uu

This command would complete its function within five to ten
seconds. The command is irrevocable without highly specialized
software knowledge, but even that would not stop the command unless
remedial action were taken within a few seconds of the command’s
execution.

Even a sole proprietor with a single personal computer can con-
nect to worldwide networks and can create evidence relevant to litiga-
tion on the hard disks of computers many miles away. Modern
computer networks render geographic distance irrelevant; evidence
created on a computer 5,000 miles away is logically as close as the hard
disk inside your own computer. It is therefore vital for both defendants’
and plaintiffs’ attorneys to consider all possible locations where rele-
vant evidence might be stored and to not limit their consideration
merely to the geographical locations where the parties happen to have
their offices.

B. Deliberate Backup Copies

Backups are redundant copies of information resident on the com-
puter at the time the backup copy was made. If (or when) the com-
puter hardware fails, a backup copy can be used to recreate the
information that otherwise would be lost. Backup copies are best made
at frequent and regular intervals. Larger companies typically employ
individuals whose responsibility it is to ensure that central computers,

114 THE FEDERAL COURTS LAW REVIEW [Vol. 1

be they local area network servers or central mainframe computers, are
backed up on a daily schedule.

Most organizations use a backup cycle as a compromise between
spending too much time making backups copies and failing to backup
all relevant information. An example of a simple, but frequently used,
backup cycle illustrates its evidentiary significance:

a) Every Friday a complete backup copy is made of every file on the com-

puter system (except those files that have been deleted or remnants of old
files not completely overwritten by new files).

b) Every day other than Friday, only those active files that have been
changed are backed up. Each day uses a different set of backup media.

When this backup cycle is used, if the computer system fails on
Tuesday, all of the data files can be restored to their most recent state
by reloading the computer from the previous Friday’s backup, followed
by the Saturday, Sunday, and Monday backups.

To give greater disaster-recovery capability, many organizations
use additional strategies:

a) Each Friday’s backup is written to one of four sets of backup media,
using these Friday sets in rotation. If a computer-based file is found to
have been corrupted three weeks ago, with a little effort it can be restored
by using the appropriate Friday tape.

b) Every fourth Friday, a new set of Friday backup media is used to re-
place the set that would otherwise be used. The set removed from use can
then be stored in a vault for some number of months, or perhaps in
perpetulty. .

Thus, a complete set of backup media acts as a time machine; re-
storing a backup copy on to the computer winds the clock back to the
moment in time when the backup was made, be that earlier that same
day or several months or even years earlier. In patent infringement
cases, prior versions of a computer program may be relevant to issues
of willfulness. In trade secret cases, prior versions of computer pro-
grams may show use of trade secrets. In copyright cases, prior versions
of computer programs may be relevant to issues of derivation.

The cost of magnetic media has dropped dramatically, and it is
now usually more cost-effective to use different media for each succes-
sive backup copy, or at least to have multiple sets of media that are
used in rotation. At any instant in time, most organizations have re-
dundant copies of their computer-based pre-litigation evidence for pre-
ceding days, weeks, months or years.

2006] Computer Software Patent Litigation 115

C. Inadvertent Backup Copies

Preservation of deliberate backup copies is a sound business prac-
tice. Even without formal procedures (or their enforcement), many in-
advertent backup copies of computer-based evidence are made by
individual computer users, either to protect their own data files created
by programs such as word processors,1© or because of giving copies of
data files on diskettes to colleagues. In smaller companies where there
is no central server, each computer user will be responsible for main-
taining his or her own backup copies in case a computer fails. How-
ever, it i1s usual for users in this context to maintain less than complete
backup copies. Many users learn the hard way (when their computer
fails or when they inadvertently delete a file) the perils of failing to
keep adequate backups. Similarly, users learn the peril of overwriting
the media used for the previous backup with the current backup; a data
file that is corrupt now might not have been corrupt the previous time a
backup copy was made, but reusing the media obliterates the last good
version of the data file.

Because of private backups, application program backups, or data
file sharing, almost every computer user has many floppy diskettes or
small tape cartridges (depending on the backup device on their com-
puter) in his or her possession, and those diskettes or cartridges typi-
cally contain a hodgepodge of data files. Much computer-based
evidence is backed up almost inadvertently, swept along with other
data files as they are copied to a backup. It is easier to backup all
active files!! from the hard disk to a tape cartridge than it is to choose
individual files. Most users take the path of least resistance and, if they
make backups at all, will backup entire disks or directories.

D. Off-Site Backup Copies

To guard against dramatic catastrophes such as fire or flood, many
companies either encourage or require the storage of backups off-site,
away from their offices. This off-site storage might be in the vault of
another company specializing in the safekeeping of backup media or
could be at the homes of senior management. If a company permits
employees to use their home computers outside of office hours, or if it

10. Word processors and other application programs usually make a backup copy of
whatever file is currently being created or modified. In the event of a power failure, or
inadvertent modifications, the user can revert {o the original data file.

11. Commercial backup software rarely, if ever, has the capability to backup ‘deleted
files’ or other remnants of prior documents.

116 THE FEDERAL COURTS LAW REVIEW [Vol. 1

employs telecommuters who routinely work at home during the day,
off-site backups will be created on these home computers as an inevita-
ble by-product. However, these informal or inadvertent backups are
unlikely to be as complete as intentional corporate backups.

E. Source Code Escrow

Software companies that license their software are often required
by their licensees to deposit computer-based copies of their human
readable source code and machine readable object code in escrow to
guard against the possibility that a licensee will be unable to continue
to use the software if the licensor goes out of business. There are com-
panies that specialize in source code escrow. Escrow copies also act as
backup copies. Most escrow agreements call for each successive ver-
sion of the source and object code to be placed into escrow, but few
agreements require earlier versions to be destroyed or returned to the
software company.

F. Source Code Licensees

Often software companies will license their source code to their
customers and will deliver this software in computer-based form. This
1S a more common practice among companies developing software for
mainframe computers than among those who produce products for the
mass personal computer market. Each source code licensee, in effect,
becomes an off-site backup site and usually retains many versions of
the vendor’s source and object code. Often, the licensor’s source or ob-
ject code melds with the licensee’s computer-based information and is
swept along with whatever intentional and incidental backups are
created.

VI. Backuprp CoPIES ARE INCOMPLETE

The preceding section implies that with adequate backups, com-
puter-based evidence can be adequately preserved. While this is true
from a typical computer user’s point of view, it falls very short from the
forensic software analyst’s point of view. Most commercial backup
software makes backup copies only of active documents and data files
on the computer’s hard disks, and excludes deleted files and remnants
of old files partially overwritten by new ones. There is usually no pur-
pose to be served by preserving this excluded information, so there is
no motivation for the backup software vendors to provide this capabil-

2006] Computer Software Patent Litigation 117

ity. Most typical backup or copy programs can be irrefutably shown not
to preserve all of the computer-based evidence that is available on the
original storage device. Fortunately, there are now special backup pro-
grams that preserve an entire image of a hard disk on tape, and special
hard disk duplication programs that make a complete copy of one hard
disk onto another.

The knowledge of the inadequacies of common commercial
backup software provides a strong impetus for a requesting party to
demand access to the producing party’s actual computer systems to in-
spect or preserve (using special ‘mirror image’ backup software) the
original disks, diskettes, and tapes. A party who, using a commercial
backup program, knowingly makes an incomplete backup copy for pro-
duction to the adverse party, might expose itself to Rule 34 sanctions
for destruction of (or failure to preserve) computer-based evidence.

A. Magnetic Tapes

Magnetic tapes of various sizes are often used for backup copies,
as they can store a large amount of data in a relatively small space.
Like home audio and video tapes, information is written from the be-
ginning of the magnetic tape sequentially toward the end of the tape.
Like home audio and video tapes, computer tapes are usually reused
when the data recorded on them becomes outdated.

The key evidentiary question is whether any prior residual infor-
mation that has not been overwritten by new information continues to
exist. This is analogous to a two-hour video tape that originally con-
tained two hours of Gone With The Wind, but was reused to record a
one hour episode of Masterpiece Theater. Does the second hour of
Gone With The Wind still exist on the tape? From the technical point
of view, residual information on a tape that has not been overwritten
continues to exist. It takes very little effort to access this restdual infor-
mation “off the end” of the active information.

Though this could be key evidence, in this author’s experience,
standard commercial tape duplicating software fails to copy “off the
end” information, and most counsel are unaware of its possible
existence.

B. Computer-Based Evidence Must be Preserved Immediately

It is important to note that remnants of documents and data files
residing on computer media have no guaranteed life-span; they could

118 THE FEDERAL COURTS LAW REVIEW [Vol. 1

be overwritten from a few seconds of using the computer, or could re-
main for months or years. The only sure preservative method is to
make a complete image backup!? of hard disks before the computer
system is used for anything else and to make complete image backups
of entire diskettes and tapes before they are reused. In this author’s
experience, companies do not do this. When litigation is filed, a pro-
ducing party may make a diligent effort to preserve paper versions of
documents but, because of lack of technical knowledge, the producing
party is extremely lackadaisical in preserving computer-based evidence.

VII. THE Vast QUuaNTITY OF COMPUTER-BASED EVIDENCE

A typical company has many computers, each with one or more
hard disk drives. The cost of high-capacity hard disks has dropped dra-
matically in the last decade,!®> and even portable laptop computers are
available with hard disks that can store 3,000,000,000 characters of in-
formation (approximately 1,000,000 pages of typewritten material, or a
stack of paper 350 feet high).

To appreciate the enormousness of computer-based information,
consider a hypothetical small software company, SmallSoft Inc., with
fifty employees. Assume forty programmers have computers and that
ten senior managers and salespersons also have laptop computers. Fur-
ther assume that ten employees have home computers they use to tap
into the company’s computers when they work from home. Finally, as-
sume that the company uses a local area network and so has a server
computer acting as a central repository for in-house documents and as a
switching yard for electronic mail messages. SmallSoft Inc., has a total
of sixty computers used by individuals, and a central server computer.

Individual computers, and even laptop computers, are likely to
have hard disks of two or three gigabytes or larger. Central network
computers usually have at least five or ten gigabytes or more of disk
storage. The total disk storage space of SmallSoft Inc. is likely to be, at
a minimum, 130 gigabytes of information. That is the equivalent of
4,300,000 pages of typewritten material. Of course, this is the maxi-
mum and assumes 100% of all disks are used for data storage. Add to
this the number of diskettes and tape cartridges that might be used for

12. “Image backup” is a term of art that describes the entire contents of a given hard
disk. An image backup includes the data contained in previously deleted files, unless the
data has been completely obliterated by new files which have overwritten the existing data.

13. The current retail cost of hard disk storage is about $150 per gigabyte (that is, per
1,000,000,000 characters of storage).

2006] Computer Software Patent Litigation 119

backup copies and the equivalent of typewritten pages is likely to
double or triple. If SmallSoft Inc. enforces rigorous backup proce-
dures, the total storage may even quadruple, reaching a stunning
17,000,000 pages of typewritten information.

In paper form, these vast volumes of evidence would require hun-
dreds of storage boxes, but today’s technology permits five gigabytes of
information to be stored on an 8-mm camcorder tape. A handful of
these tapes could easily store 25 gigabytes of information. New devices
will store up to 25 gigabytes on a single camcorder cassette; all of
SmallSoft Inc.’s evidence could be held in a jacket pocket. Absent ade-
quate computer security, a disgruntled employee could walk past a se-
curity guard with all of SmallSoft’s intellectual property, and all
computer-based information, in a purse or a shirt-pocket.

VIII. THE DIiSORGANIZED STATE OF COMPUTER-BASED EVIDENCE

Although computer diskettes and tapes are readily organized in
desk drawers or storage cabinets, and hard disks are tidily hidden inside
personal computers, the evidence they contain is rarely organized co-
herently. Most computer users settle for just getting useful work done,
rather than attempting to maintain a neat and tidy hard disk. In fact,
many computer users do not even organize their data files into sub-
directories to impose an organizational hierarchy on their files. Since
the disorganized state of a computer’s hard disk is not visible exter-
nally, there is little motivation for tidiness.

Individual backup media are rarely catalogued. In testament to
the general reliability of modern personal computers, backup copies
are rarely used once created. Usually only the most recent backup
copy is relevant to disaster recovery. Off-site backups, copies of mater-
ials in escrow, and copies sent to licensees are rarely accounted for. If
they are, only the most recent material is usually of interest to the com-
puter user. The true chaos of a company’s organization of computer-
based evidence becomes apparent only when litigation is filed. Both
parties are confronted with the challenges of:

a) finding all relevant evidence, and

b) sifting through that evidence to discard irrelevant or privileged
information.

For the defendant, it is easy to take a lazy approach and claim that
much computer-based evidence was never created, no longer exists, or
cannot be found. In this author’s experience, some companies assert:

120 THE FEDERAL COURTS LAW REVIEW [Vol. 1

a) They do not keep more than thirty days’ worth of electronic mail
messages. Centralized backup copies of email for only thirty days is plau-
sible, but it is almost certain that individual computer users preserve their
own private copies of email correspondence for far longer than this in
either printed form or magnetic media.

b) They do not keep more than one or two prior versions of their
software products. This begs the question of whether these companies
provide user support for earlier versions of their products. If they do,
then it would be reasonable that they keep both the source code and ob-
ject code for these products. Absent the source and object code, it would
be almost impossible for a company to meet its customer support obliga-
tions. To fix a problem, or to help a user around it, demands the recrea-
tion of the problem to diagnose and correct it.

Taking the lazy way is also extremely risky because a typical com-
pany leaves a wide swath of evidence (paper, computer-based or anec-
dotal) regarding its procedures. One set of backup disks or tapes
usually contains telltales that speak of specific policies or procedures,
or hints of the existence of, or cross references to, particular documents
or versions of source code. The court (and opposing counsel) may be
skeptical if an otherwise well-organized company appears to have only
recently developed patchy backup procedures.

IX. DRrRAFTING DOoCUMENT REQUESTS

This section offers some technical suggestions for crafting precise
document requests, although it is worded colloquially rather than in the
style one normally finds in such requests.

A document request should demand production of the following
information:

a) All relevant computer source code. If the source code is managed by
revision control software, the revision control version of the source code
must be requested, rather than specific versions of the source code derived
from the revision control software. The software requested must include
all makefiles and other control files used to create the finished object code
from source code, along with any source code header or copybook files
that are included by reference into other source code files.

b) If the documentation s managed by a document control system (such
as many law firms use), the actual document files (and perhaps the docu-
ment control software, as well) must be requested if all forensic informa-
tion is to be produced.

¢) If third party software products are required to unlock or gain access
to the source code, copies of these products must be requested unless the
same versions of these products are still currently availabie on the market.
d) If any information is encrypted or protected by security access
software, then the security access software and appropriate decryption
keys and passwords must be provided.

2006] Computer Software Patent Litigation 121

The production of third party software, either for revision control,
document management, or as software components used by the pro-
ducing party, is almost always a disputed issue. The producing party
usually takes the position that production of this software would be an
act of copyright infringement. On the other hand, unless the particular
version of the software is still currently available, the lack of this
software will almost certainly deny the requesting party access to rele-
vant information. In the case of the revision control and document
management software, the requesting party will be denied highly rele-
vant forensic information. In the case of the third party products, the
requesting party may be unable to access all of the source code
produced.

At first blush, a reasonable approach might be to simply purchase
current versions of the third party products. However, by the time a
dispute’s discovery phase has begun, it is more likely than not that any
relevant third party product will be unavailable on the market.

The principal issue is whether a producing party is obligated to
produce copies of third party materials used in the production of the
computer software. This might at first appear to be a clear example of
copyright infringement, but there are often extenuating circumstances
(beyond the fact that the copying is being done in connection with liti-
gation), the most usual of which is that the third party software used in
the creation of the software is no longer available. Unless the produc-
ing party makes a copy of this third party material, the requesting party
will not have a complete copy of the software.

In certain cases, most notably with Microsoft’s Visual Basic prod-
ucts, third party extensions (“VBX”) must be present for the Visual
Basic program to present the producing party’s source code. The third
party, VBX| acts as a lock that will block access to the producing
party’s source code, or at least to that part of it that interoperates with
the third party VBX.

A. Embodiment of Documents Produced

A document request should make it clear that, where any informa-
tion (be it source code, documents or other information exists on com-
puter media) it must be produced as computer media rather than being
printed out. The only condition under which a printed document might
be acceptable is if the producing party does not have a copy of that
document on computer media.

122 THE FEDERAL COURTS LAW REVIEW [Vol. 1

B. Information Necessary to Access Information Produced

To recover and analyze the information produced, one needs to
understand some important technical details about the information’s
original habitat, and details about the particular embodiment in which
it has been produced. Concerning the information’s original habitat—
the environment in which the information was created and managed—
one needs to know:

a) the manufacturer, model, and configuration of the computer system
upon which the information was created and managed (for example, a
Toshiba Tecra 730 CDT with 64 MB of RAM);

b) the manufacturer, name, and version number under which the infor-
mation was created and managed (for example, Windows 95, Release
950A with Service Pack 1 installed); and,

c¢) the manufacturer, program name, and version number of the software
used to create and manage the information. An example response for
source code might be Microsoft Visual C++, version 5, or, for word
processing documents, WordPerfect 6.1. The response to this question
might bifurcate if the information in question is source code that is main-
tained under revision control software. Then, besides the details about
the source code itself, one also needs to know the manufacturer, program
name, and version number of the revision control software itself.

Regarding the embodiment in which the information is being pro-
duced, one needs to know:

a) The manufacturer and model number of the hardware device in which
the media was placed to write the information being produced. This is
particularly important for magnetic tapes, or for any device other than a
standard IBM PC compatible floppy diskette (which is one of the few true
standards in the industry). An example response would be a WangDAT
3400DX 4mm tape drive.

b) The manufacturer, program name, version number, and specific opera-
tional parameters used with the software that was employed to write the
information to the media being produced. For example, this might be Ar-
cada Backup version 2.0.

This embodiment-related data is particularly critical for minicom-
puters such as the IBM AS/400, for mainframe computers, or for those
running the Unix operating system. Without this data, the information
produced will be, for all practical purposes, inaccessible.

C. Ensuring a Complete Production

Though one of the first tasks for a forensic expert is to determine
whether a document production is complete, it is quite rare to see a
document production request that defines a means by which both par-

2006] Computer Software Patent Litigation 123

ties can know whether all relevant computer software files have been
produced.

A complete production of computer source code is easily defined
as production of all relevant source code, makefiles, and additional in-
formation (the details of which were described above), necessary for
the requesting party to access all files from the media upon which they
were produced and to recreate the entire executable program from
scratch using the source code provided. If the computer software is
written in Microsoft Visual Basic, a further condition is required: the
requesting party must be able to access the entire source code embed-
ded within all of the Visual Basic files provided (the inability to do this
shows that not all third party software components have been
provided).

A complete production of object code can be defined as all aspects
of the program used on a computer, where the aspects of the program’s
capabilities are described in an appropriate user manual.

X. DRAFTING INTERROGATORIES

While source code and its associated design and specification docu-
ments usually provide a wealth of forensic information (at least when
produced on computer media), there is usually a need to understand
specific details of the way in which the software was created. These
questions can be addressed through interrogatories.

The three most important areas of information required are
usually:

a) Which programmers worked on which parts of the program.

b) By what means the document production requested was compiled.
What was searched? How? By whom?

c¢) Identification of the various versions of the software that were created.

A. Software Authorship

A given source code file is usually developed by a single computer
programmer, at least during the initial stages of its creation. Thereaf-
ter, many different hands and minds may touch it, changing certain
lines of text, inserting others, and deleting others.

If the source code has been placed under revision control, in the
ideal case, every change can be related to a specific human author.
More often than not, there will be questions of program authorship that
are best determined before any depositions if pertinent questions are to
be asked of the appropriate deponents.

124 THE FEDERAL COURTS LAW REVIEW [Vol. 1
B. Methods Used for Document Production

Before the computer revolution, a business’ records were in view,
in filing cabinets or desk drawers, and a physical search was all that was
required to comply with a document request. Computers have changed
that, providing ultra-compact means for storing millions of pages of
printed paper on devices that can fit into a pocket.

Therefore, when a producing party makes a document production
involving computer-based evidence and software, a very relevant series
of questions needs to be asked. These questions should include how
the party prepared the document production, on what computers the
party searched, by what means the party searched, what keywords were
used in any keyword searches, what magnetic tapes were searched, and
whether the search included any off-site vaults and storage facilities.

C. Identification of Versions

Software evolves rapidly in today’s industry, and one version may
be current for only a few weeks or months. Usually, a given version of
software is identified by its version number such as 3.11, or in some
cases by its “vintage,” such as Windows 95. Software version numbers
to the left of the decimal point are usually increased when a new ver-
ston contains significant new capabilities, whereas the numbers to the
right of the decimal point are increased to reflect minor increments.

While a finished program may have a specific version number,
such as WordPerfect 6.1, there can be hundreds of components, each
with their own version number, none of which is the number 6.1. It is
therefore important to establish precisely which versions of the
software were released to the public or put into service, and, if possible,
identify some means for determining the individual components’ ver-
sion numbers included in those specific releases. Only after this version
number history has been ascertained can one determine the specific
source code used to create each release of the overall software.

XI. ANALYSIS OF COMPUTER SOFTWARE

Once the producing party has made a production, the initial chal-
lenges for a forensic software analyst are:
a) Testing for completeness of the production of software and object
code.

b) Identifying specific versions of the software and the versions of the
individual components of which it is comprised.

2006] Computer Software Patent Litigation 125

c) Correlating the specific versions of the software with the specific ver-
sions of the object code.

d) Creating a chronology of the software’s evolution.

Only when these important preparatory steps have been completed can
the analysis of the software with respect to the patent, copyright, or trade
secrecy claims begin.

XII. CoONCLUSION

The computer geeks of the world have effectively hidden many
conceptual nooks and crannies that exist with respect to computer
software and its associated computer-based evidence. The problems of
evidence preservation, production, and forensic analysis are further ex-
acerbated by each quantum leap that occurs in computer storage and
processing power.

Computers, it could be argued, have made life easier for many who
use them. However, nothing could be further from the truth for those
who deal with the preservation, production, and analysis of computer-
based evidence.

A COMPILATION OF ARTICLES
PUBLISHED ELECTRONICALLY FROM
1998-2006

PART II: MILITARY TRIBUNALS
AND TERRORISM

I TimME FOR CONGRESSIONAL ACTION: THE NECESSITY
OF DELINEATING THE JURISDICTIONAL
REsPONSIBILITIES OF FEDERAL DisTRICT COURTS,
CoURrTs-MARTIAL, AND MILITARY COMMISSIONS TO
Try VioLATIONS OF THE LAaws OF WAR

II. MiLiTARY TRIBUNALS, THE CONSTITUTION, AND THE
UCMJ

